

Novel Approaches to Discover Genes Linked to Drug Response

Rada Savic, PhD Dept. Of Bioengineering and Therapeutic Sciences, UCSF

nature publishing group

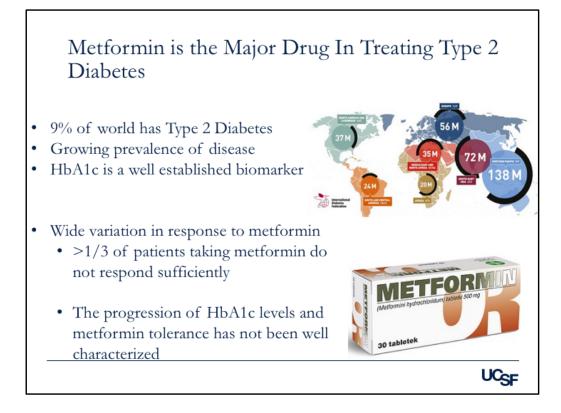
CLINICAL PHARMACOLOGY & THERAPEUTICS | VOLUME 100 NUMBER 5 | NOVEMBER 2016

Genetic Variants in Transcription Factors Are Associated With the Pharmacokinetics and Pharmacodynamics of Metformin

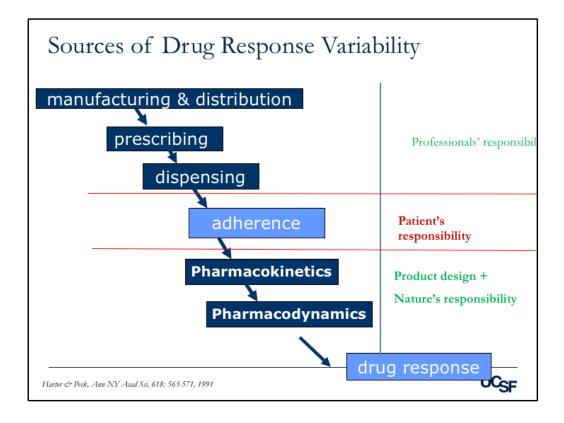
S Goswami¹, SW Yee¹, S Stocker¹, JD Mosley², M Kubo³, R Castro¹, JA Mefford¹, C Wen¹, X Liang¹, J Witte¹, C Brett⁴, S Maeda³, MD Simpson⁵, MM Hedderson⁶, RL Davis⁷, DM Roden², KM Giacomini¹ and RM Savic¹

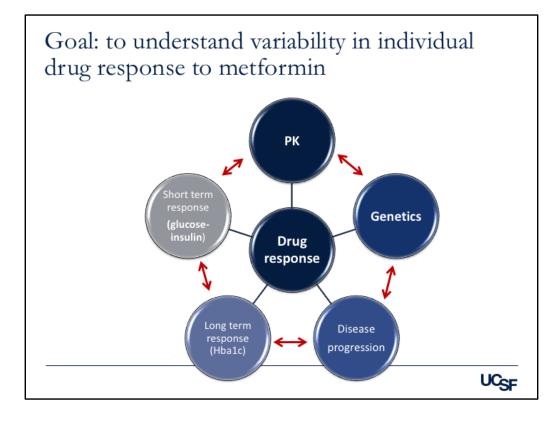
A Longitudinal HbA1c Model Elucidates Genes Linked to Disease Progression on Metformin

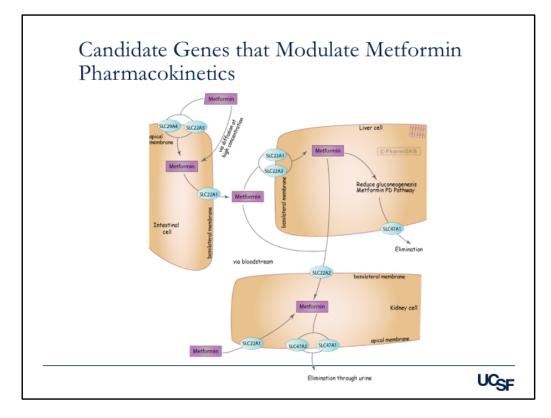
S Goswami¹, SW Yee¹, F Xu², SB Sridhar², JD Mosley³, A Takahashi⁴, M Kubo⁴, S Maeda⁴, RL Davis^{5,6}, DM Roden³, MM Hedderson², KM Giacomini¹ and RM Savic¹

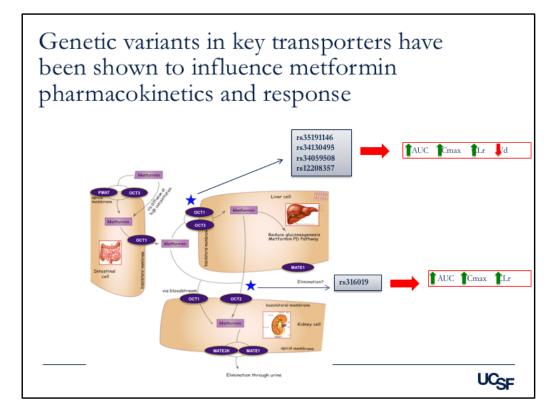

3

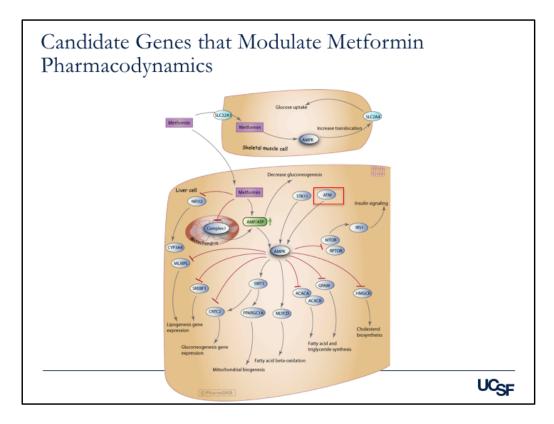
5/8/19

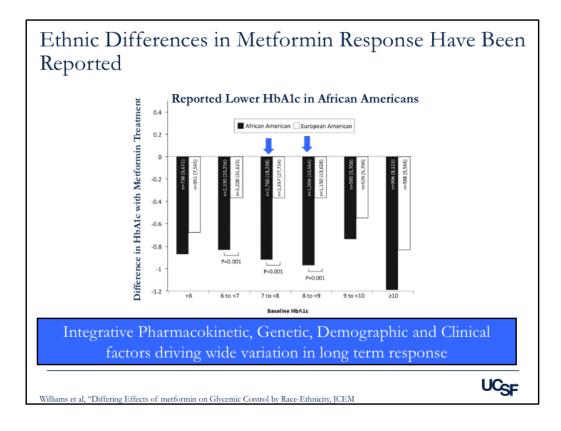

UCSF


5/9/19






- 1. Since metformin is not metabolized, membrane transporters in the intestine, kidney and liver play an even very important role in metformin disposition and response
- 2. Despite metformin's peripheral glucose lowering effects in peripheral tissues such as fat and muscle, the primary site of action is in the liver, shown here
- 3. In the liver, metformin conducts many of its pharmacological actions, including increasing glucose uptake and decreasing gluconeogenesis


- 1. Genetic polymorphisms in these transporters have been shown to affect metformin's pharmacological outcomes
- 2. A few small studies have shown the effect of genetic variants on metformin PK, fewer have looked at PD
- 3. For example, in the liver, there are 4 OCT1 variants, 1 of which is a deletion, that has been associated with an increase in AUC, CMAX, and renal clearance
- 4. There is an OCT2 coding variant, associated with an increase in exposure and renal clearance

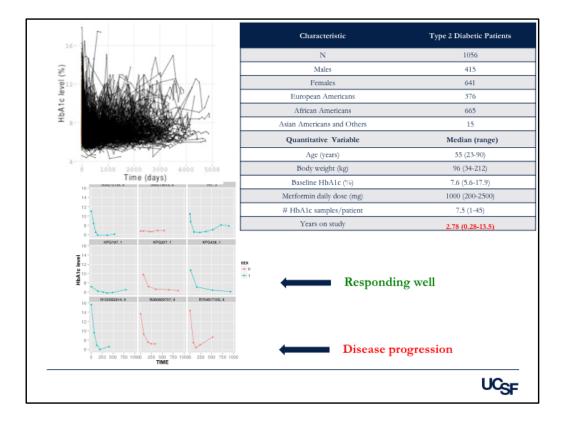
- 1. Genetic polymorphisms in these transporters have been shown to affect metformin's pharmacological outcomes
- 2. A few small studies have shown the effect of genetic variants on metformin PK, fewer have looked at PD
- 3. For example, in the liver, there are 4 OCT1 variants, 1 of which is a deletion, that has been associated with an increase in AUC, CMAX, and renal clearance
- 4. There is an OCT2 coding variant, associated with an increase in exposure and renal clearance

A Longitudinal HbA1c Model Elucidates Genes Linked to Disease Progression on Metformin Therapy

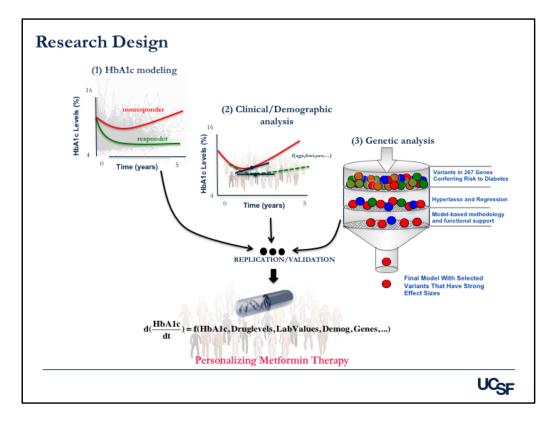
Rada Savic, PhD

Dept. Of Bioengineerign and Therapeutic Sciences, UCSF

Research Aim

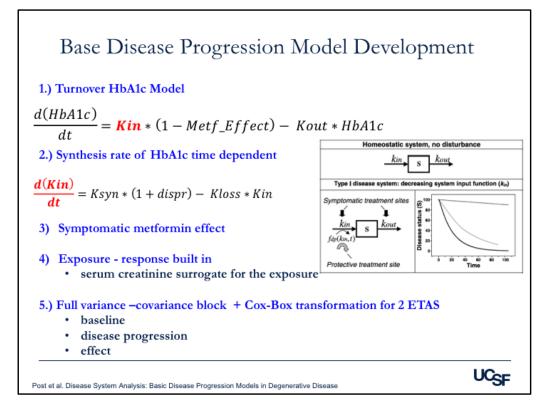

Characterize and predict treatment response to metformin using a linked bioinformatics and NLME approach in T2D patients

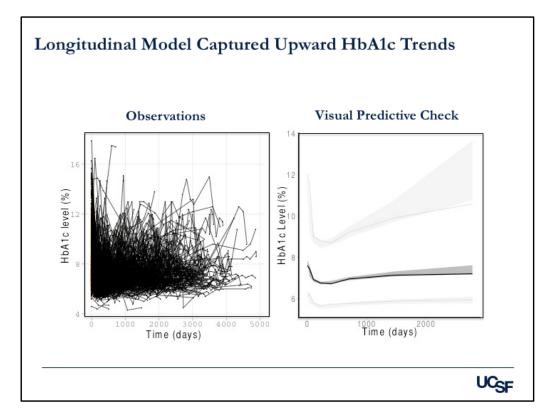
Identify patients likely not to respond


Questions to explore:

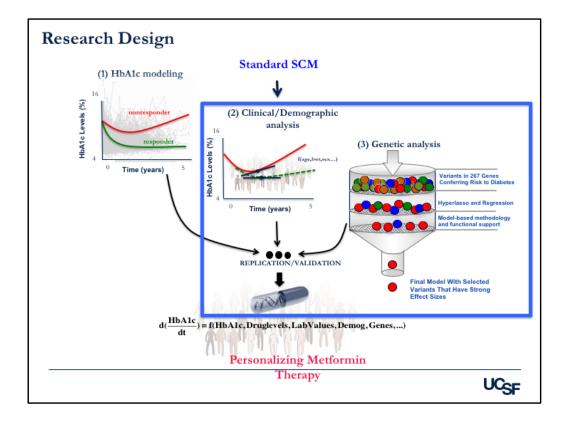
- 1. Can we identify and quantify disease progression in T2D patients?
- 2. At what point do HbA1c levels start to increase in T2D Patients?
- 3. What are the relative roles of genetic and non-genetic factors?
- 4. Which genes influence the dynamics of disease progression?

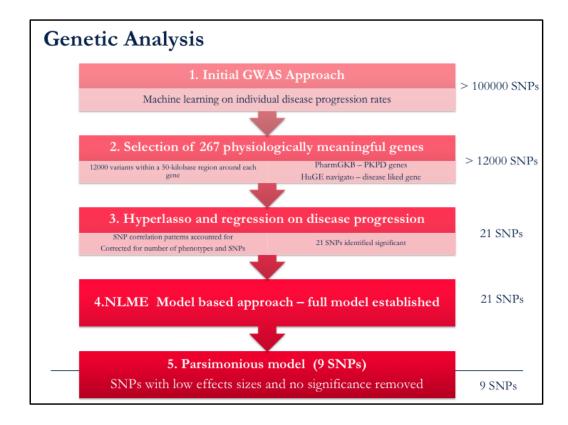
UCSF


- The workflow for the research is as follows:
- Development of semi-mechanistic HbA1c model in a cohort of approximately 1100 patients with T2D with genomic data.
- SCM, clinical/demographic analysis of model parameters prior to the investigation of genetics.
- Genetic analysis
 - Selection of candidate genes: 2 approaches were used to prioritize genes for analysis on disease progression. 1) Pulling disease linked genes from an online GWAS database called HuGE navigator. 2) Pulling all relevant PK/PD genes from PharmGKB. The reason these two sources were preferred is because we hypothesize that the long term trajectory of HbA1c may be influenced by both T2D disease genes as well as metformin pharmacological genes. Drug resistance and a patient's underlying disease progression may play a role here.
 - Selection of SNPs within 50 kilobases of the genes of interest (both pharmacological and disease based).
 - Hyperlasso methodology. Considers correlation patters across SNPs being tested. Corrects for number of SNPs as well as number of phenotypes tested.
 - Top HL SNPs are then investigated using a model based approach: A full model of HL identified SNPs was created. SNPs with low effect sizes and not statistically significant were removed.

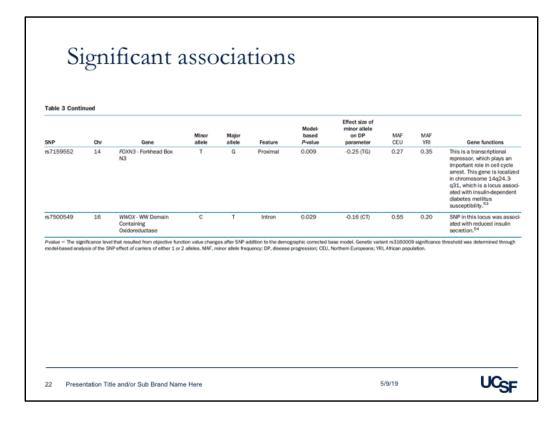

SNP	Gene	Association in Literature	N	PMID
			N=21	PMID:19536068;
s35191146	SLC22A1	AUC Cmax CLr Vd OGTT	N= 103	PMID:17609683
s34130495		AUC Cmax CLr Vd OGT	N=21	PMID:19536068;
s34059508	SLC22A1	AUC Cmax CLr Vd OGT	N= 103	PMID:17609683
1834059508		AUC Cmax	N=21 N= 103	PMID:19536068;
s12208357	SLC22A1	AUC Cmax CLr Vd OGTI		PMID:17609683
512200357	SLC22A1	AUC Cmax CLr Vd OGT	N=21 N= 103	PMID:19536068; PMID:17609683
s1867351	SLO22A1	AUC CITIAX CEI VII UGHT	N= 103	PMID. 17009085
51001001	SLC22A1	Renal Clearance (CLr)	N=103	PMID:19536068
s622342		†		
	SLC22A1	Response: HbA1c	N=99	PMID:19381165
s2289669		†		PMID: 19228809
	SLC47A1	Response: HbA1c	N=116	PMID: 20682687
s8065082				PMID: 19228809
	SLC47A1	Diabetes incidence	N=116	PMID: 20682687
s316019		1	N=26	PMID:18401339;
			N=15	PMID:18551044;
s12943590	SLC22A2	AUC Cmax CLr	N=23	PMID:19483665
s12943590				PMID:21956618
	SLC47A2	Response: HbA1c CLr	N=57	PMID:23267855
s2252281	0204772		14-01	7 WIE-20207000
	SLC47A1	Altered glucose tolerance	N=57	PMID:23267855
s10735		• · · · · · · · · · · · ·		
	SLC47A1	Nothing known; promoter variant	NA	NA
s555754		Luciferase activity for Minor allele		
	SLC22A3	mRMA of OCT3	NA	PMID: 22231567
s60515630		Luciferase activity for Minor allele		
	SLC22A3	mRMA of OCT3	NA	PMID: 22231567
PMT6211	SLC22A3	Nothing known; promoter variant	NA	NA

- 1. Collection of variants in literature associated with metformin phenotypic outcomes
- 2. In addition to transporter variants, there has been 1 Genome wide association study that identified an ATM locus associated with response. This study however was not replicated and the phenotype that was looked at was a binary stratification of HBA1C.
- 3. Limitations anchoring these studies include: sample size, and methodology
- 4. Also, a couple of these variants, although not much known, are promoter variants with minor allele frequencies >10 %

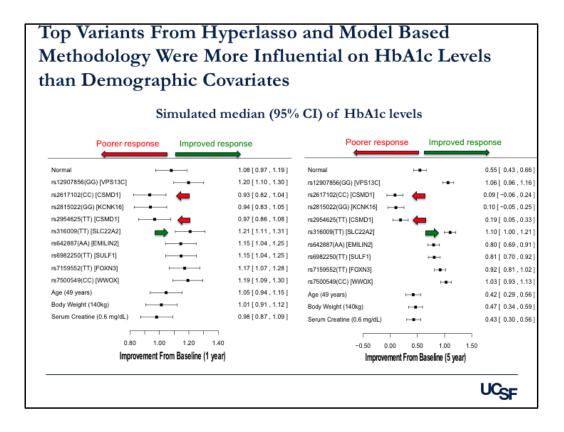


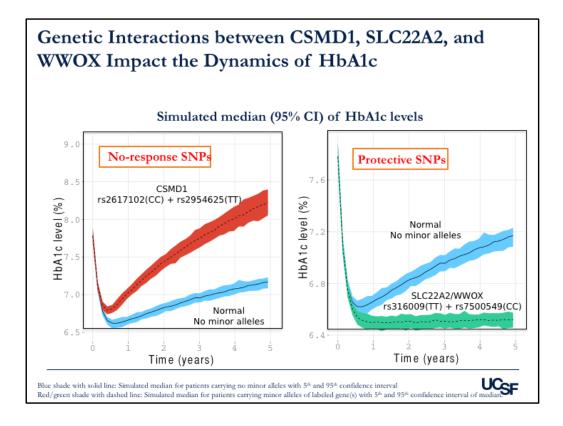


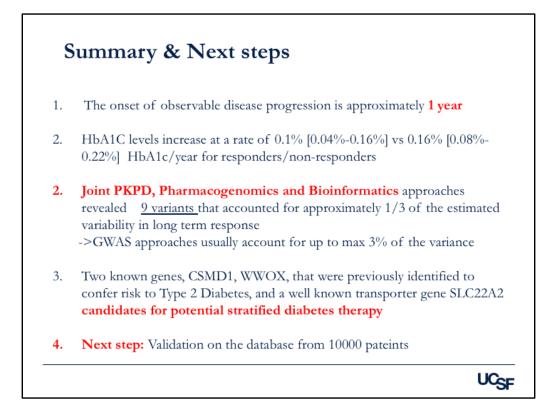
- Source Files:
- 1) PD_Datasumm.R
- 2) Vpc_ron.R
- 3) Further modification illustrator etc.



Significant associations


SNP	Chr	Gene	Minor allele	Major allele	Feature	Model- based P-value	Effect size of minor allele on DP parameter	MAF	MAF YRI	Gene functions
12907856	15	VPS13C - vacuolar protein sorting- associated 13 gene family	G	A	Proximal	0.0003	-0.147 (GA)	0.30	0.30	This gene encodes a mem- ber of a vacuolar protein. SNP in this gene was associ- ated with glucose-stimulated insulin response. ^{41,43}
2815022	6	KCNK16 - Potassium Channel, Two Pore Domain Subfamily K, Member 16	G	A	Proximal	0.009	0.39 (GA)	0.48	0.26	This gene encodes the TALM 1 channel, the most abun- dant potassium channel in human beta-cells and it mod- ulates beta-cells electrical excitability, second phase insulin secretion and glucose homeostasis. ^{44,60}
\$2617102	8	CSMD1 - CUB And	с	A	Intron	0.02	0.717 (CA)	0.19	0.20	This gene encodes an inte-
s2954625	8	Sushi Multiple Domains 1	Ť	С	Intron	0.029	0.23(TC)	0.21	0.46	gral membrane protein with unknown molecular function. SNP in this gene was associ- ated with congenital hyperin- sulinism of infancy. ⁴⁰
1316009	6	SLC2242 - Solute Carrier Family 22 (Organic Cation Trans- porter), Member 2	т	C	Intron	0.04	-0.44 (TC)	0.10	0.08	This is a transporter in the kidney that secretes metilizer min into the urine. This SNP is in linkage disequilibrum to a non-synonymous variant, A2705 (rs316019), which was associated with metilizer min disposition. ^{47,48}
642887	18	EMLIN2 - Bastin Microfibril Interfacer 2	A	G	Intron	0.05	-0.42 (AG)	0.14	0.21	An extracellular mathin glyco- protein associated with thrombosis. EMLIN2 is involved in regulating plated activation important for car- dovascular development, ^{84,55} whereas EMLINI may be involved in regomeration of islets, which-could play a sole in tood glacose lowering. ⁸⁴
s6982250	8	SULF1 - Sulfatase 1	т	с	Intron	0.0023	-0.37 (TC)	0.17	0.28	This gene encodes an enzyme, which is involved in modulating growth factor sig- naling. Data from sulfatase knockout mice showed that it plays a role in diabetic neohropathy. ⁵²


5/9/19



		BASE		FINAL
Desc	MODEL	FULL MODEL	MODEL	
	unction value	6212.14		
OFV Difference	0111.14	-140.65		
	Baseline	7.74	7.74	
	Half Life of Effect	40.9		
	Proportional Error	0.0977	0.0974	
	Additive Error	0.1 Fixed	0.1 Fixed	0.1 Fixed
Base Model Parameters	Effect	0.131	0.136	0.135
	Disease Progression	82	234	172
	Scale on Effect	2.38	2.31	2.37
	Kloss	0.204	0.25	0.232
	Scale on Disease Progression	-0.246	-0.408	-0.31
	Body Weight	-0.00268	-0.00263	-0.00262
	Average Serum Creatinine	0.276	0.26	0.273
Covariates on Effect Magnitude	Clinical Site Effect (Vanderbilt)	-0.165	-0.162	-0.165
· ·	Clinical Site Effect (Marshfield Clinic)	-0.303	-0.28	-0.285
	Clinical Site Effect (Kaiser Georgia)	-0.0251	-0.0301	-0.0333
	Age	-0.0281	-0.029	-0.029
	rs2815022 (GA)	NA	0.272	0.389
	rs2815022 (GG)	NA	0.966	0.936
	rs316009 (TC)	NA	-0.552	-0.442
	rs316009 (TT)	NA	-0.894	-0.73
	rs2954625 (TC)	NA	0.0342	0.234
	rs2954625 (TT)	NA	0.735	1.13
	rs2617102 (CA)	NA	0.517	0.717
Covariates on Disease	rs2617102 (CC)	NA	1.06	
Progression	rs6982250 (TC)	NA	-0.357	
0	rs6982250 (TT)	NA	-0.276	
	rs7159552 (TG)	NA	-0.337	
	rs7159552 (TT)	NA	-0.595	
	rs12907856 (GA)	NA	-0.363	
	rs12907856 (GG)	NA	-0.765	
	rs7500549 (CT)	NA	-0.217	
	rs7500549 (CC)	NA	-0.815	
	rs642887 (AG/AA)	NA	-0.506	
-	Baseline	16.90%	16.90%	
Parameter Variability	Disease Progression	324%	180%	225.409
	Effect Magnitude	76.40%	74.80%	74.90%

5/9/19

